UNDERWATER LIGHT AVAILABILITY IN FJORDAL ECOSYSTEMS

V. Mascarenhas’ and O. Zielinski

veloisa.john.mascarenhas@uni-oldenburg.de

Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany

Role of light in aquatic ecosystems

- Light plays an essential role in aquatic food webs
- Under water, light is either absorbed or scattered by water constituents
- The optically active constituents (OACs) include phytoplankton, organic matter and sediments
- Abundance of OACs determine light availability underwater
- The constituents also determine color of water in aquatic ecosystems

Accelerated melting in the Arctic

- Greenland, 2nd largest Ice-Sheet in the world
- Its mass loss has quadrupled over last two decades
- Meltwater contributes to about ¼ th of the present sea level rise
- Melting glaciers also release sediments referred to as ‘glacial flour’
- Released sediments affect light availability and alter ecosystem functioning

Fjords along coasts of Norway & Greenland

- Fjords are estuaries formed by glacial activity
- Fjords form transition zones between Ice-sheets and the ocean
- Profiles of spectral light measured using radiometers
- Water samples collected at discrete depths to determine concentrations of optically active constituents

Key findings & Take away

- Three spectral types of one percent irradiance curves identified along fjord transects in Norway and Greenland
 - Type 1: V-shaped, with ~ 500 nm traveling deepest
 - Type 2: U-shaped, with ~ 500 - 560 nm traveling deepest
 - Type 3: V-shaped, with ~ 560 nm traveling deepest
 - Spectral types not specific to fjord sections but strongly influenced by concentrations of optically active constituents in the sections

Acknowledgements and References

The authors are thankful to the master and crew onboard RV Heincke, cruise HE448 and RV Maria S. Merian, cruise MSM65. Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG), Senatskommission Oceanographie (MerMet 15-85 Zielinski). Part of the work was carried out as part of the Coastal Ocean Darkening project, funded by the Ministry for Science and Culture of Lower Saxony, Germany (VWZN3175).

Dr. Veloisa Mascarenhas