Assessment of wastewater treatment plant and coastal landfill as important microplastics pathways in the marine environment

Maria KAZOURa,b, Sarah TERKIa, Khalef RABHIa, Rachid AMARAb

a Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, 32 Avenue Foch, Wimereux, France
b CNRS-L, National Center for Marine Sciences, PO Box 534, Batroun, Lebanon

1. Study zone and sampling sites:
 - Edelweiss WWTP
 - Le Havre Harbor
 - Sainte-Adresse

2. Sampling methods:
 a. Water filtration
 - Filtering system consisting of a water pump connected to a flowmeter
 - Stainless steel sieves of different mesh sizes of 500 μm, 200 μm, 80 μm and 20 μm
 - Density separation using ZnCl\textsubscript{2} (d = 1.8 g/cm3)
 b. Sediments
 - Sediment samples were collected
 - Treatment under H\textsubscript{2}O\textsubscript{2} and density separation using ZnCl\textsubscript{2}
 c. Wild mussels
 - 20 individuals of Mytilus sp. were collected
 - Mussels were digested using KOH 10%

3. Microplastics analysis
 - Size, color and polymer type

1. WWTP, surface water and sediments
 - Microplastics retention: 98.83%.
 - Microplastics decreased with increasing distance from the WWTP
 - Higher concentration in site 5 (next to the coastal landfill).
 - Mussels from site 5 ingested a significantly higher number of suspected MPs (2.75 ± 3.08 items/g).

2. Microplastics similarity
 - 13 types of polymers were identified using micro-Raman spectroscopy.
 - A similarity in polymers composition between mussels and sediments was observed except in site 5.

Discussion and Conclusion
- The WWTP has a retention efficiency of 98.83% but yields to a daily discharge 227 million MPs
- We highlight the importance of coastal landfills as important MPs sources
- Mussels are prone to ingest small microplastics (< 200 μm) and show a polymer similarity to that of sediments: promising sentinel species for small MPs.

\textbf{Context}
- Marine Plastic debris have been tremendously increasing since the last decade
- Entry routes of microplastics (MPs; Plastics of a size between 1 μm and 5 mm) into the marine environment not well known

\textbf{Objectives}
- Role of a municipal wastewater treatment plant (WWTP) effluent and an abandoned coastal landfill as pathways for microplastics (MPs) input into the marine coastal environment.
- Follow the MPs released by WWTP in the marine environment along a distance gradient in three compartments (sub-surface water, sediments and mussels).

\textbf{Materials and Methods}

\textbf{Results}